The volume

Area of sectoer is a circule		
revolving about X-axis $\{r = y = f(x)\}$		
$\mathbf{V}=\int\limits_{\mathbf{a}}^{\mathbf{b}}{\pi(\mathbf{r})}^{2}\mathbf{dx}=\int\limits_{\mathbf{a}}^{\mathbf{b}}{\pi(\mathbf{y})}^{2}\mathbf{dx}$		
revolving about Y-axis $\{r = r = g(y)\}$		
$\mathbf{V} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \pi(\mathbf{r})^2 \mathbf{dy} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \pi(\mathbf{x})^2 \mathbf{dy}$		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
$\mathbf{V} = \int\limits_{\mathbf{a}}^{\mathbf{b}} {\pi(\mathbf{r})}^{2} \mathbf{d}\mathbf{x} = \int\limits_{\mathbf{a}}^{\mathbf{b}} {\pi(\mathbf{k}-\mathbf{y})}^{2} \mathbf{d}\mathbf{x}$		
revolving about line parallel to $\mathbf{Y} - \mathbf{axis}(\mathbf{x} = \mathbf{k}) \{\mathbf{r} = \mathbf{k} - \mathbf{x} \}$		
$\boxed{ \mathbf{V} = \int_{\mathbf{a}}^{\mathbf{b}} \pi(\mathbf{r})^{2} d\mathbf{y} = \int_{\mathbf{a}}^{\mathbf{b}} \pi(\mathbf{k} - \mathbf{x})^{2} d\mathbf{y} }_{\mathbf{a}} $		
Area of is sectoer is a ring		
revolving about $X-axis\{r_1 = y_1 = f_1(x), r_2 = y_2 = f_2(x)\}$		
$\mathbf{V} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{r_1})^2 - (\mathbf{r_2})^2 \right] d\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{y_1})^2 - (\mathbf{y_2})^2 \right] d\mathbf{x}$		
revolving about $Y-axis\{r_1 = x_1 = g_1(y), r_2 = x_2 = g_2(y)\}$		
$\mathbf{V} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{r_1})^2 - (\mathbf{r_2})^2 \right] \mathbf{dy} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{x_1})^2 - (\mathbf{x_2})^2 \right] \mathbf{dy}$		
revolving about line parallel to $X-axis(y = k) \{r_i = k - y_i \}$		
$\mathbf{V} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{r_1})^2 - (\mathbf{r_2})^2 \right] d\mathbf{x} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{k} - \mathbf{y_1})^2 - (\mathbf{k} - \mathbf{y_2})^2 \right] d\mathbf{x}$		
$\label{eq:constraint} \begin{array}{ c $		
$\mathbf{V} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{r_1})^2 - (\mathbf{r_2})^2 \right] \mathbf{dy} = \int_{\mathbf{a}}^{\mathbf{b}} \pi \left[(\mathbf{k} - \mathbf{x_1})^2 - (\mathbf{k} - \mathbf{x_2})^2 \right] \mathbf{dy}$		

Examples.

Area of sectoer is a circule		
revolving about X-axis (exp2.4)		
$\mathbf{R}:\mathbf{y=}\sqrt{\mathbf{x}},0\leq\mathbf{x}\leq4$		
$\mathbf{V} = \int \pi (\sqrt{\mathbf{x}})^2 d\mathbf{x} = \pi \int (\mathbf{x}) d\mathbf{x}$		
revolving about Y-axis (exp2.5)		
${\bf R}: {\bf y}=4-{\bf x}^2, {\bf y}=1, {\bf x}=0$		
$\mathbf{V} = \int \pi (\sqrt{4-\mathbf{y}})^2 \mathbf{dy} = \pi \int (4-\mathbf{y}) \mathbf{dy}$		
revolving about line parallel to X-axis $(y = 1)$		
$\mathbf{R}:\mathbf{y}=\frac{1}{4}\mathbf{x}^2,\mathbf{x}=0,\mathbf{y}=1$		
$ = \int \pi (1 - \frac{1}{4}x^2)^2 dx = \pi \int (1 - \frac{1}{2}x^2 + \frac{1}{16}x^4) dx $		
revolving about line parallel to $Y-axis$ (x = 1)		
${f R}: {f y} = {({f x} - 1)}^2, {f x} = 1, {f y} = 1$		
$\mathbf{V}=\int \pi (1-\sqrt{\mathbf{y}}-1)^{2}\mathbf{d}\mathbf{y}=\pi\int (\sqrt{\mathbf{y}})^{2}\mathbf{d}\mathbf{y}$		
0 0		

Area of sectoer is a ring			
revolving about X-axis (exp2.6b)			
$\mathbf{R}:\mathbf{y}=rac{1}{4}\mathbf{x}^2,\mathbf{x}=0,\mathbf{y}=1$			
$\mathbf{V}=\int\limits_{0} {oldsymbol{\pi}} \left[{\left(1 ight)}^{2} - {\left(rac{1}{4} \mathbf{x}^{2} ight)}^{2} ight] \mathbf{d} \mathbf{x}$			
revolving about Y-axis			
$\mathbf{R}:\mathbf{y}=\sqrt{\mathbf{x}},\mathbf{y}=0,\mathbf{x}=1$			
$\mathbf{V}=\int \pi\left[(1)^2-(\mathbf{y}^2)^2 ight] \mathbf{dy}=\pi\int \left[1-\mathbf{y}^4 ight] \mathbf{dy}$			
vovolving about line papallel to X avia(ovp2.7a)			
revolving about the parallel to X-axis(exp2:re)			
$\mathbf{R}: \mathbf{y} = \frac{1}{4}\mathbf{x}^2, \mathbf{x} = 0, \mathbf{y} = 1 \ (\mathbf{about} \ \mathbf{y} = 2)$			
$\mathbf{V} = \int\limits_{0}^{1} \pi \left[(2 - rac{1}{4} \mathbf{x}^2)^2 - (2 - 1)^2 ight] \mathrm{d} \mathbf{x}$			
revolving about line parallel to Y-axis(exp2.7d)			
$\mathbf{R}: \mathbf{y} = 4 - \mathbf{x}^2, \mathbf{y} = 0(\mathbf{about} \ \mathbf{x} = 3)$			
$\boxed{ \mathbf{V} = \int_{0}^{1} \pi \left[(2 - \frac{1}{4} \mathbf{x}^2)^2 - (2 - 1)^2 \right] \mathbf{d} \mathbf{x} }$			

Arc length and Area of surface

Arc length	Area of surface (about $x - axis$)
$\label{eq:L_alpha} \boxed{ \begin{array}{c} \mathbf{L} = \int\limits_{\mathbf{a}}^{\mathbf{b}} \sqrt{1 + (\frac{d\mathbf{y}}{d\mathbf{x}})^2} \mathbf{d}\mathbf{x}. \end{array} }$	$\mathbf{S}=\int\limits_{\mathbf{a}}^{\mathbf{b}}2\pi\mathbf{y}\sqrt{1+(rac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}})^{2}}\mathbf{d}\mathbf{x}.$
$\boxed{ \mathbf{Ex.(1)}: \ \mathbf{y^2} = \mathbf{x^3} \qquad 1 \leq \mathbf{x} \leq 4. }$	${f Ex.(1)}:$ ${f y}=\sqrt{4-{f x}^2}$, $-1\leq x\leq 1,$
$\frac{2}{-}$	
Ex.(2) : $\mathbf{y} = \mathbf{x}3 - 10, \ 0 \le \mathbf{x} \le 8$	${f Ex.(2)}: {f y}={f x}^3, {f 0}\leq {f x}\leq 1$
$\boxed{ \underline{\mathbf{Exc.}} (1) \ \mathbf{y} = \sqrt{1 - \mathbf{x}^2} , -1 \leq \mathbf{x} \leq 1. }$	<u>Exc.</u> :(1) $\mathbf{y} = \sqrt{\mathbf{x}}, 0 \le \mathbf{x} \le 1.$
3	
(2) $y = 4x\overline{2} + 1$, $1 \le x \le 2$.	