The volume

Area of is sectoer is a ring
revolving about $X-\operatorname{axis}\left\{\mathbf{r}_{1}=\mathbf{y}_{1}=\mathbf{f}_{\mathbf{1}}(\mathbf{x}), \mathbf{r}_{\mathbf{2}}=\mathbf{y}_{\mathbf{2}}=\mathbf{f}_{\mathbf{2}}(\mathbf{x})\right\}$
$\mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{r}_{1}\right)^{2}-\left(\mathrm{r}_{2}\right)^{2}\right] \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{y}_{1}\right)^{2}-\left(\mathrm{y}_{2}\right)^{2}\right] \mathrm{dx}$
revolving about $\mathbf{Y}-\operatorname{axis}\left\{\mathbf{r}_{1}=\mathbf{x}_{1}=\mathbf{g}_{1}(\mathbf{y}), \mathbf{r}_{\mathbf{2}}=\mathbf{x}_{\mathbf{2}}=\mathbf{g}_{\mathbf{2}}(\mathbf{y})\right\}$
$\mathbf{V}=\int_{\mathbf{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{r}_{1}\right)^{2}-\left(\mathrm{r}_{2}\right)^{2}\right] \mathrm{dy}=\int_{\mathrm{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{x}_{1}\right)^{2}-\left(\mathrm{x}_{2}\right)^{2}\right] \mathrm{dy}$

|revolving about line parallel to X-axis $(\mathbf{y}=\mathbf{k})\left\{\mathbf{r}_{\mathbf{i}}=\left|\mathbf{k}-\mathbf{y}_{\mathbf{i}}\right|\right\}$

$$
\mathbf{V}=\int_{\mathbf{a}}^{\mathrm{b}} \pi\left[\left(\mathbf{r}_{1}\right)^{2}-\left(\mathbf{r}_{2}\right)^{2}\right] \mathrm{dx}=\int_{\mathbf{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{k}-\mathbf{y}_{1}\right)^{2}-\left(\mathrm{k}-\mathbf{y}_{2}\right)^{2}\right] \mathrm{dx}
$$

\mid revolving about line parallel to $\mathbf{Y}-\operatorname{axis}(\mathbf{x}=\mathbf{k})\left\{\mathbf{r}_{\mathbf{i}}=\left|\mathbf{k}-\mathbf{x}_{\mathbf{i}}\right|\right\}$
$\mathbf{V}=\int_{a}^{b} \pi\left[\left(\mathbf{r}_{1}\right)^{2}-\left(\mathbf{r}_{2}\right)^{2}\right] \mathrm{dy}=\int_{\mathrm{a}}^{\mathrm{b}} \pi\left[\left(\mathrm{k}-\mathrm{x}_{1}\right)^{2}-\left(\mathrm{k}-\mathrm{x}_{2}\right)^{2}\right] \mathrm{dy}$

Examples.

Area of sectoer is a circule
revolving about X -axis (exp2.4)
$\begin{gathered} \mathrm{R}: \mathrm{y}=\sqrt{\mathrm{x}}, \mathbf{0} \leq \mathrm{x} \leq \mathbf{4} \\ \mathbf{V}=\int_{0}^{4} \pi(\sqrt{\mathrm{x}})^{2} \mathrm{dx}=\pi \int_{0}^{4}(\mathrm{x}) \mathrm{dx} \end{gathered}$
revolving about Y-axis (exp2.5)
$\begin{aligned} & \mathrm{R}: \mathrm{y}=4-\mathrm{x}^{2}, \mathrm{y}=1, \mathrm{x}=0 \\ & \mathrm{~V}=\int_{1}^{4} \pi(\sqrt{4-y})^{2} \mathrm{dy}=\pi \int_{1}^{4}(4-\mathrm{y}) \mathrm{dy} \end{aligned}$
revolving about line parallel to X-axis $(\mathrm{y}=1)$
$\begin{gathered} \mathrm{R}: \mathrm{y}=\frac{1}{4} \mathrm{x}^{2}, \mathrm{x}=0, \mathrm{y}=1 \\ \mathrm{~V}=\int_{0}^{2} \pi\left(1-\frac{1}{4} \mathrm{x}^{2}\right)^{2} \mathrm{dx}=\pi \int_{0}^{2}\left(1-\frac{1}{2} \mathrm{x}^{2}+\frac{1}{16} \mathrm{x}^{4}\right) \mathrm{dx} \end{gathered}$
revolving about line parallel to Y-axis ($\mathrm{x}=1$)
$\begin{gathered} \mathrm{R}: \mathrm{y}=(\mathrm{x}-1)^{2}, \mathrm{x}=1, \mathrm{y}=1 \\ \mathrm{~V}=\int_{0}^{1} \pi(1-\sqrt{\mathrm{y}}-1)^{2} \mathrm{dy}=\pi \int_{0}^{1}(\sqrt{\mathrm{y}})^{2} \mathrm{dy} \end{gathered}$

Arc length and Area of surface

Arc length	Area of surface(about x - axis)
$\mathrm{L}=\int_{\mathrm{a}}^{\mathrm{b}} \sqrt{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}} \mathrm{dx} .$	$S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .$
Ex.(1): $\mathrm{y}^{2}=\mathrm{x}^{3} \quad 1 \leq \mathrm{x} \leq 4$.	Ex.(1): $\quad \mathrm{y}=\sqrt{4-\mathrm{x}^{2}},-1 \leq \mathrm{x} \leq 1$,
Ex.(2): $\quad \mathrm{y}=\mathrm{x} \overline{3}-\mathbf{1 0}, \quad \mathbf{0} \leq \mathrm{x} \leq 8$	Ex.(2): $\mathrm{y}=\mathrm{x}^{3}, \quad 0 \leq \mathrm{x} \leq 1$
Exc. (1) $\mathrm{y}=\sqrt{1-\mathrm{x}^{2}} \quad,-1 \leq \mathrm{x} \leq 1$.	Exc. :(1) $\mathrm{y}=\sqrt{\mathrm{x}}, \quad 0 \leq \mathrm{x} \leq 1$.
(2) $\mathrm{y}=4 \mathrm{x} \overline{2}+1,1 \leq \mathrm{x} \leq 2$.	

